53 research outputs found

    A systematic literature review and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment

    Get PDF
    Vulnerability assessment (e.g., vulnerability identification and exploitation; also referred to as penetration testing) is a relatively mature industry, although attempting to keep pace with the diversity of computing and digital devices that need to be examined is challenging. Hence, there has been ongoing interest in exploring the potential of artificial intelligence to enhance penetration testing and vulnerability identification of systems, as evidenced by the systematic literature review performed in this paper. In this review, we focus only on empirical papers, and based on the findings, we identify a number of potential research challenges and opportunities, such as scalability and the need for real-time identification of exploitable vulnerabilities

    Lico: A Lightweight Access Control Model for Inter-Networking Linkages

    Full text link
    © 2013 IEEE. Processes in operating systems are assigned different privileges to access different resources. A process may invoke other processes whose privileges are different; thus, its privileges are expanded (or escalated) due to such improper 'inheritance.' Inter-networking can also occur between processes, either transitively or iteratively. This complicates the monitoring of inappropriate privilege assignment/escalation, which can result in information leakage. Such information leakage occurs due to privilege transitivity and inheritance and can be defined as a general access control problem for inter-networking linkages. This is also a topic that is generally less studied in existing access control models. Specifically, in this paper, we propose a lightweight directed graph-based model, LiCo, which is designed to facilitate the authorization of privileges among inter-networking processes. To the best of our knowledge, this is the first general access control model for inter-invoking processes and general inter-networking linkages

    A systematic literature review of blockchain cyber security

    Get PDF
    Since the publication of Satoshi Nakamoto's white paper on Bitcoin in 2008, blockchain has (slowly) become one of the most frequently discussed methods for securing data storage and transfer through decentralized, trustless, peer-to-peer systems. This research identifies peer-reviewed literature that seeks to utilize blockchain for cyber security purposes and presents a systematic analysis of the most frequently adopted blockchain security applications. Our findings show that the Internet of Things (IoT) lends itself well to novel blockchain applications, as do networks and machine visualization, public key cryptography, web applications, certification schemes and the secure storage of Personally Identifiable Information (PII). This timely systematic review also sheds light on future directions of research, education and practices in the blockchain and cyber security space, such as security of blockchain in IoT, security of blockchain for AI data, and sidechain security,etc

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    A Mixing Scheme Using a Decentralized Signature Protocol for Privacy Protection in Bitcoin Blockchain

    Full text link
    IEEE Bitcoin transactions are not truly anonymous as an attacker can attempt to reveal a user's private information by tracing related transactions. Existing approaches to protect privacy (e.g. mixcoin, shuffle, and blinded token) suffer from a number of limitations. For example, some approaches assume the existence of a trusted third party, rely on exchanges among various currencies, or broadcast sensitive details before mixing. Therefore, there is a real risk of privacy breach or losing tokens. Thus in this paper, we design a mixing scheme with one decentralized signature protocol, which does not rely on a third party or require a transaction fee. Specifically, our scheme uses a negotiation process to guarantee transaction details, which is monitored by the participants. Furthermore, the scheme includes a signature protocol based on the ElGamal signature protocol and secret sharing. The proposed scheme is then proven secure

    Deep dive into ransomware threat hunting and intelligence at fog layer

    Get PDF
    Ransomware, a malware designed to encrypt data for ransom payments, is a potential threat to fog layer nodes as such nodes typically contain considerably amount of sensitive data. The capability to efficiently hunt abnormalities relating to ransomware activities is crucial in the timely detection of ransomware. In this paper, we present our Deep Ransomware Threat Hunting and Intelligence System (DRTHIS) to distinguish ransomware from goodware and identify their families. Specifically, DRTHIS utilizes Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), two deep learning techniques, for classification using the softmax algorithm. We then use 220 Locky, 220 Cerber and 220 TeslaCrypt ransomware samples, and 219 goodware samples, to train DRTHIS. In our evaluations, DRTHIS achieves an F-measure of 99.6% with a true positive rate of 97.2% in the classification of ransomware instances. Additionally, we demonstrate that DRTHIS is capable of detecting previously unseen ransomware samples from new ransomware families in a timely and accurate manner using ransomware from the CryptoWall, TorrentLocker and Sage families. The findings show that 99% of CryptoWall samples, 75% of TorrentLocker samples and 92% of Sage samples are correctly classified

    Forensic investigation of cross platform massively multiplayer online games: Minecraft as a case study

    Get PDF
    Minecraft, a Massively Multiplayer Online Game (MMOG), has reportedly millions of players from different age groups worldwide. With Minecraft being so popular, particularly with younger audiences, it is no surprise that the interactive nature of Minecraft has facilitated the commission of criminal activities such as denial of service attacks against gamers, cyberbullying, swatting, sexual communication, and online child grooming. In this research, there is a simulated scenario of a typical Minecraft setting, using a Linux Ubuntu 16.04.3 machine (acting as the MMOG server) and Windows client devices running Minecraft. Server and client devices are then examined to reveal the type and extent of evidential artefacts that can be extracted

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    corecore